

Sistema
Retrofit
Scheda Tecnica

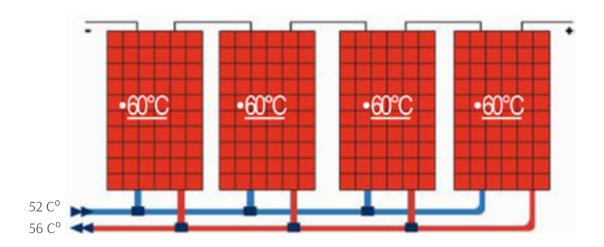
RETROFIT

Retrofit è l'innovazione dell'arte della tecnologia per il miglioramento dell'efficienza energetica. Il Retrofit è un pannello in alluminio attraversato da canali di piccoli dimensioni, nei quali scorre del liquido con soluzione glicolata che permette la dissipazione del calore in estate (dalle celle fotovoltaiche) e recupero del calore in inverno (dalle celle fotovoltaiche). In abbinamento con le pompe di calore fungono da geotermia elio assistita con aumento considerevole del COP >4. Con l'utilizzo del Retrofit su un impianto fotovoltaico già esistente si ottengono diversi vantaggi, tra cui:

- 1) Riduzione dei costi del 30% su utenze riscaldamento.
- 2 Maggior risparmio economico sulle spese di gestione degli impianti.

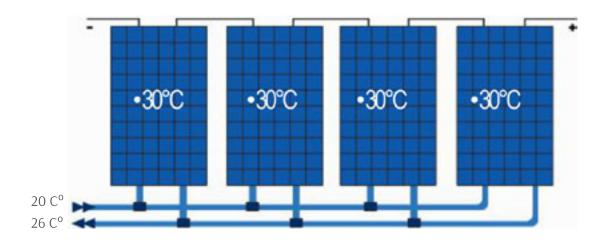
Kit Retrofit

Ferma barra - 6 pz.



Barre di sostegno - 3 pz.

VANTAGGI


- Minore invecchiamento delle celle fotovoltaiche
- Aumento della produzione di energia elettrica + 15%
- Trasformazione del vostro impianto fotovoltaico in impianto fotovoltaico termico
- Produzione contestuale di energia elettrica ed energia termica.
- Snevamento invernale attraverso il controllo della temperatura del tetto.
- Recupero di calore per riscaldamenti a pavimento civili e industriali.
- Abbinato ad una pompa di calore migliora la performance della stessa.
- Utilizzo dell'energia termica per la produzione di acqua sanitaria e per il riscaldamento.
- Riscaldamento piscine e acqua calda sanitaria.

A) MASSIMA TEMPERATURA ACQUA CALDA

Si ottiene la possibilità di avere acqua calda a temperature analoghe agli impianti solari-termici (60° estate, 30° inverno). La resa elettrica dell'impianto è comunque aumentata.

B) MASSIMA RESA ELETTRICA

La resa elettrica dell'impianto fotovoltaico è aumentata di circa il 15% su base annua alla latitudine di Milano Si genera una grande quantità di acqua a circa 26°.

PERFORMANCE TERMICO				
	Estate	Mezza stagione	Inverno	
Potenza termica per pannello (kW)	0,90	0,45	0,23	
Inclinazione dei collettori	25°	25°	25°	
Temperatura ambiente	25 °C	18 °C	8 °C	
Potenza termica totale (kW)	10,8 (50°C)	5,4 (40°C)	2,76 (25°C)	

FRONTE RETRO

PARAMETRI TERMICI		
Rendimento ottico	η ₀ 0 0,566	
Coefficiente di dispersione termica lineare	a1 14,405 W/(m²ºK)	
Coefficiente di dispersione termica quadratico	a2 0,000 W/(m ²⁰ K)	
Potenza termica pannello	930 W	
Variazione dell'efficienza ottica per angolo di incidenza a 50°	k⊖ (50°) 96 %	
Massima temperatura operativa consentita	80 °C	
Massima pressione di esercizio	4 bar	
Volume di fluido nel pannello	0,8	
Superficie lorda	1,65 m²	
Superficie di apertura	1,52 m ²	
Superficie assorbitore	1,46 m²	
Diametro attacchi di collegamento	Ø 8 x 1 mm x mm	
Normativa di riferimento UNI EN 12975 CEI EN 61215 CEI EN 61730		

PRODUZIONE ACS*			
Portata consigliata	1,00 litri al minuto		
Perdite di carico	160 mbar		
Numero massimo pannelli in parallelo	6 pz		
ABBINAMENTO PDC*			
Portata consigliata	1,67 litri al minuto		
Perdite di carico	294 mbar		
Numero massimo pannelli in parallelo	6 pz		

Intervallo di temperatura di lavoro -40°C \sim +85°

Condizioni standard di test:

- Irraggiamento di 1000W/m² Temperatura ambiente 25° C A.M.1,5.

Dati e caratteristiche possono essere modificati in qualsiasi momento senza preavviso.

GARANZIA: 10 anni su difetti di fabbricazione.

GDD Energy Via Burrone, 59 Chignolo Po (PV) Cell. 380 36 22 549 info@gddenergy.it www.gddenergy.it